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The behavior of a boundary layer in the vicinity of a separation point on a surface, 
which is at rest or moves with a velocity u w = O(Re -I/8) (Re is the Reynolds number), is 
described by the "triple-decker" flow model first introduced by Kra~ivskii et al. [i, 2]. 
In the case where the surface moves downstream with a velocity Re -I/8 << u w << i, the prob- 
lem has been solved for supersonic flows [3, 4] and for an incompressible fluid [5]. Zhuk 
[6] has published numerical results within the framework of the triple-decker scheme for 
a surface moving upstream. 

In the present article we investigate the motion of a surface upstream with a velocity 
Re -I/8 << u w << i. We assume that the flow is described by the Navier-Stokes equations, the 
external (freestream) flow is supersonic, its parameters have been reduced to dimensionless 
form by the usual convention, and Re + ~. We first obtain a solution of the linearized 
problem by the triple-decker scheme and pass to the limit uwRe I/8 + =; we then analyze the 
problem for Re -I/8 << u w << i. 

i. In the triple-decker model, as we know, the flow is partitioned into three zones: 
an external "$nviscid" flow with thickness y = O(Re-3/8), the main part of the boundary lay- 
er y = O(Re-I/2), and the wall layer y = O(Re-S/8), which provides the main contribution to 
the induced pressure. The length of the interaction zone is O(Re-S/8), and the characteris- 
tic differential pressure is O(Re-i/4). If the flow parameters are reduced to dimensionless 
form as in [2], the equations describing the flow in the wall layer have the form 

UoU/Ox + voU/ay + p'(x) = o~u/oy ~, oU/Ox + ov/oy = o, ( 1 . 1 )  

where  U and V a r e  t h e  l o n g i t u d i n a l  and t r a n s v e r s e  c o m p o n e n t s  o f  t h e  v e l o c i t y  v e c t o r ,  r e s p e c -  
t i v e l y ,  and P i s  t h e  p r e s s u r e .  The n o - s l i p  c o n d i t i o n  h o l d s  a t  t h e  w a l l ,  and t h e  d i s t u r b a n c -  
e s  d e c a y  t o  z e r o  i n  t h e  l i m i t  x ~ • 

U = - - U  o, V = 0  a t  y = 0 ;  lim U = y - - U  o. ( 1 . 2 )  

The p r e s s u r e  i n d u c e d  by t h e  f i n i t e  d i s p l a c e m e n t  t h i c k n e s s  i s  g i v e n  by t h e  A c k e r e t  e q u a -  
t i o n :  

l im ( U - - y )  = A ( x ) ,  - -  A ' ( x )  = P - - h O ( x ) .  ( 1 . 3 )  y~+~ 

Here  U0 i s  t h e  n e g a t i v e  o f  t h e  d i m e n s i o n l e s s  v e l o c i t y  a t  t h e  w a l l ,  and h i s  t h e  d i f f e r e n -  
t i a l  p r e s s u r e  a c r o s s  t h e  d i s c o n t i n u i t y .  The p r o b l e m  can  be  s o l v e d  c o m p l e t e l y  in  t h e  l i n e a r  

- ' ' ,  approximation, i.e., i V = hY (I) + 

.... P = hP(I) + . . i i ase n e obtain 

(g--Uo)OU(1)/Oi+Y (1) + P(1) ' (x)  = OU(i) /~y 2, OV(1)/Oi--~OY(1)/Oy = 0. ( 1 . 4 )  

The b o u n d a r y  c o n d i t i o n s  ( 1 . 2 )  and ( 1 . 3 )  a c q u i r e  t h e  f o r m  

U(1)(x, O) = V(1)(x, O) = U(1)(_+~, y) = 0; ( 1 . 5 )  

(OUO)/Ox)(x, + oo) = O(x) -- pO~(x). (1.6) 

The Fourier transform with respect to x reduces problem (1.4)-(1.6) to a system of or- 
dinary differential equations. We solve it to obtain 
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where larg(ik) l < ~, and (ik) I/3 > 0 for (ik) > 0. At x < 0 and for Imk ~ 0 the integrands 
are regular (except at a finite set of poles) and vanish in the limit k + ~. Consequently, 
the behavior of Eqs. (1.7) and (1.8) at negative x is determined by the integrand singulari- 
ties, which coincide (for Imk < 0) with the zeros of the expression in the braces. It has 
been shown [7] that these zeros are situated along the negative imaginary semiaxis, the num- 
ber of them is finite [O(U08/s) in the limit U ~ + ~), and they correspond to the eigenfunc- 
tions of problem (1.4)-(1.6), which have the form 

Y 

u (~) ~ # * ~  ~ Ai  ( ( i k #  ~ (v - -  u0)) dy, P(~) ~ e ('~)*~, 
0 

where (ik), is a certain zero of the expression in the braces, which we have already noted 
is real and positive. If the velocity perturbations did not obey the extinction condition 
in the limit x + +~, the solution of the problem would not be unique and would differ from 
(1.7), (1.8) by an arbitrary linear combination of these eigenfunctions. 

We now analyze the case U § +~ in more detail. We write the expression in the braces 
as 

Ai' (-- (ik) 1/3 Uo) + (ik) 4/3 ~ Ai (z) dz : Ai' (-- (ik) 1/8 Uo) X 
--({~)I/~U o 

+~ 
X [~ + ~kU; I + (--  i~U; I) g (-- (/~)1/3 Uo)] ' g (~) = ~ + ~ ~ A~ (g) dz~Ai' (~)). 

We invoke the asymptotic representation of Ai(z) in the limit z § % [arg z I < ~, and we 
write g(~) = O(~ -I) in the limit ~ § ~, largEl < z; also, g[-(ik)i/3U0] is bounded for 
real k, because Ai'(z) vanishes only at negative real z. This implies that 

I ikU;~g(--(ik) ~/3U0) I = o ( l l + i k U ~ ' l )  for  % - +  co, I m k = 0  

and in  t h e  p r i n c i p a l  a p p r o x i m a t i o n  f o r  U0 + - ,  Eqs .  ( 1 . 7 )  and ( 1 . 8 )  can  be r e p r e s e n t e d  as  
v +~ 

At' ( -  (~k),/~u0) (t + (~k)v~,) 2~, (1 .7 ' )  

These expressions, 

p(x) : ~ eihX dk 
--ao 2~%~ (If - -  t0) ( t  -~ ikUo1 ) " 

in turn, are rewritten in the form of convolutions: 

u~l) = f "~ (~, v) G (z --  ~) 4 ;  
- - m e  

( 1 . 8 ' )  

(1.9)  

where 

+ O O  

p(1) = f ~ (~) e (x - ~) 4 ,  
b o o  

y +oo 
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2~i (k -- ~0) 
--oo 

- e (x); 
(1.12) 

G (x) = j - ~  2~ (i + ikU~ I) -- U~ (x) exp ( - -  Uox ). ( 1 . 1 3 )  e~kx dk 

It is verified by direct substitution that Eq. (I.ii) is a solution of Eqs. (1.4) sub- 
ject to the boundary conditions (1.5) for the pressure given by Eq. (1.12). Even though 
problem (1.4), (1.5), (1.12) is parabolic in x, it is still formulated as a boundary-value 
problem with respect to the longitudinal coordinate. 

If we lift the extinction condition in the limit x + +~, we find that the solution is 
not unique and differs from Eq. (i. Ii) by an arbitrary linear combination of the eigenfunc- 
tions of problem (1.4), (1.5), (1.12), which have the form 

Y 

~ e ('~*~ j Ai  ((ik):/~ (y - Uo)) dy, 
0 

where (ik), is a certain root of the equation Ai'[-(ik)i/3U0] = 0. 

The scale transformation k = kU03, x = xU0 -3, y = yU0 -I, u = u'U0 -I eliminates the ex- 
plicit dependence of (i. Ii) on U0; we infer from this fact that the characteristic variation 
of u takes place in a region y = O(U0), x = O(U03) (region B in Fig. i). We also note that 

is continuous everywhere except at x = 0. At this point u(+0, y) - u(-0, y) = U0 -l This 
result can be obtained, for example, by integrating Eqs. (1.4) with the pressure (1.12) with 
respect to x in the neighborhood of x = 0. 

Since G(x) decays far more rapidly [at x = O(U0-1)] than u(x, y), Eq. (1.9) can be writ- 
ten as follows (in the principal approximation for U0 + ~) at points where u is continuous: 

v (~) (x, y) = ~ (x, y) ~ G (~) d~ = ~ (x, y). 

In  a s m a l l  n e i g h b o r h o o d  o f  t h e  p o i n t  o f  d i s c o n t i n u i t y  u = ~ ( - 0 ,  y ) O ( - x )  + u (+0 ,  y )O(x )  + 
o ( 1 ) ,  x ~ 0, and Eq. ( 1 . 9 )  has  t h e  form 

0(x)o + 0, o- o? 

Equation (i.i0) is integrated exactly: 

p(1)=  O(x)[i - -  e-U~ ( 1 . 1 4 )  

Consequently, in the limit U 0 § ~ the viscous sublayer of the interaction zone decays 
into two regions: A and B. The longitudinal scales of regions A and B are 0(U0 -I) and 
O(U02), respectively. The thickness of the regions is O(U0). The velocity perturbations 
decay in region B, and in region A the discontinuity of the longitudinal component of the 
velocity vector and the pressure is smoothed. If we estimate the contribution of the dis- 
placement thickness to the pressure, we find that it is of the order of unity in region A 
and is O(U0 -4) in region B. However, even though the influence of displacement is negli- 
gible in region B, it must still be taken into consideration, because the initial velocity 
profile for region A, in which the interaction problem is now formulated, begins to take 
shape in the displacement layer. It is also interesting that the pressure perturbations do 
not propagate upstream away from the discontinuity [Eq. (1.14)]. This result is only asymp- 
totically true in the limit U0 ~ ~. For finite wall velocities the pressure perturbations, 
as should be expected, propagate in both directions away from the discontinuity. 

2. The solution retains a similar structure in the nonlinear case. We assume at the 
outset that Re -I/s << u w << 1 and that the differential pressure across the discontinuity 
Ap = O(uw2). The condition that the slopes of the streamlines and the differential pressure 
in the interaction zone are of the same order implies that the characteristic length of the 
interaction zone Ax = O(Re-i/2Uw-1). 

The length of the region in which the perturbations decay due to viscosity is O(uw3). 
In the linear case these are regions A and B, respectively. Since their thicknesses, by 

672 



-~tO 

k g>l B 
1 l" -Re-~/e(~pJ r/2 

Y<1 

Z~ i 

Fig. i 

analogy with [3], are O[Re-i/2(kp) I/2] << Re -I/2, we assume that the viscosity and density 
are constant and equal to their wall Values, and also that the unperturbed velocity profile 
is linear. We make the following changes of variables: 

in region B 

in region A 

g = [u '  (0)] - ~  Re-~ /2u~Y,  z = (p~/Pe) (M~IM,~) [u' (0)1-2 u a x ,  

u = u,~u, u = (~t,~/F:) (PEP,~) u '  (0) B e - ~ / = u T ~ ,  p = (P~/Pe) u~P,2~" 

~/ : [U '  (0)]  - !  ~eI1/'uwY, x : (pe/~)w) [ / t '  (0)1 - !  (M~ - -  ] ) - 1 / 2  I~e-1/2uT1X, 
M 2 = u j &  v = (P~/P,) ( ~ - -  1) ~/' "~V,  P = (P~/P~) u~e'~ 

Here u' (0) is the slope of the unperturbed velocity profile at the wall in the scale of the 
boundary layer; the indices w and e refer to the values of the variables at the wall and in 
the external flow. We also assume that the differential pressure across the discontinuity 
is represented by the equation P = h0(x) [h = (pe/Pw)(kp/Uw 2) is the dimensionless intensity 
of the discontinuity]. The equations describing the flow then acquire the form: 

in region B 

gau/~ + v~au/ar + h ~ )  = O'u/al ~, ~/a~ + aZ/a}" = o, 
(2.1) o ) = - I ,  o)= o, (au/ar)(Z +oo)=  r ) =  r -  i; 

in region A 

u a u / a x  + Va'u/aY + F ( X )  = O, a~O/ax + aT/aY = 0, ( 2 . 2 )  

(X,  0) = 0, l i m  ('U - -  Y) = A (X),  A '  (X)  = he  (X)  - -  P .  
y -++~ 

The initial condition for U is determined from the conditions for matching of the solutions 
in regions A and B: 

. lim U ( X , Y ) =  lira u( 'x ,r ) ,  ( 2 . 3 )  
X-->• '~--~+o 

where it is sufficient to specify only one limit, either X + +~ or X + -~. It is readily 
apparent that the second limit holds automatically. Condition (2.3) distinguishes this case 
from the case discussed in [3, 4], where the wall moves downstream. In [3, 4] the unper- 
turbed velocity profile was taken as the initial profile for the interaction zone. It is 
also interesting that the problem is formulated as a boundary-value problem in the longitu- 
dinal coordinate, even though the flow in region B is described by ordinary boundary-layer 
equations. Such a formulation follows from the linear analysis [problem (1.4), (1.5), (1.12) 
in Sec. i above], where it was shown that the linearized problem (2.1) has a denumerable set 
of eigenfunctions that grow exponentially downstream. The extinction conditions for the ve- 
locity perturbations in the limit x + +~ must also be stated in order to eliminate this di- 
vergence. One more remark is in order: Inasmuch as the equations are "inviscid" in region 
A, there must be a thin wall layer in which the influence of viscosity is essential. How- 
ever, the contribution of this layer to the induced pressure is O(Re -I/4) << &p lap = O(uw2)] 
and will therefore be disregarded from now on. 
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3. We now examine the case of small h in closer detail. The equations describing the 
flow in regions A and B are linearized everywhere with the possible exception of a critical 
layer in the vicinity of the point Y = i. We consider region A first. The expansion U = 
-i + Y + hU (1) + ..., V = hV (I) + ..., P = hP (z) + ... is valid outside the critical layer; 
substituting it in Eq. (2.2), we obtain 

--I)OU(t)/OX+V~ = O, aU(~)/OX+OVc~)~Y = 0; (3.1) 

VO)(X, O) = O, (OU('/OX)(X, +oo) = I O ( X )  - -  P(1)(X). ( 3 . 2 )  

Linearization eliminates the longitudinal component of the velocity vector from the 
equations, leaving only its derivative with respect to X. Consequently, if one is concerned 
with only the behavior of the pressure in region A, it is not necessary to specify the ini- 
tial velocity profile, which is determined by the matching condition (2.3). This kind of 
simplification is valid only in the linear problem. This is not the case in the nonlinear 
problem, and it is required to know the initial velocity profile, which is obtained by solv- 
ing the problem for region B. 

For an arbitrary function P(Z)(X) the solutions of Eq. (3.1) subject to the impermeabil- 
ity condition and the condition (3.2) at the outer boundary do not coincide in general. 
They are written 

OU(~)/OX : P(~)'(X), V (1) : _ y p ( 1 ) , ( X ) ;  ( 3 . 3 )  

OU(1)/oX = O ( X )  - p ( 1 ) ( X ) ,  V (~) = --p(t) '(X) + (Y  --  l )  x 

X (P(1)(X) - -  O(X)). ( 3 . 4 )  

Relation (3.3) satisfies the impermeability condition and, in any case, is valid for Y < i; 
Eq. (3.4) satisfies the condition at the outer boundary and is valid for Y > i. The only 
point (apart from the viscous wall layer) at which Eqs. (3.1) are no longer applicable is Y = 
i. To match the solutions (3.3) and (3.4) at Y = i, we introduce a new region (region I in 
Fig. i) Y - 1 = hz/2Y. The expansion U = hz/2Y + hU + ..., V = -hP(1)'(X) + h3/2V + ... 
holds in this region (which is usually called the critical layer). We note that "viscous" 
terms, which are O(Re-Z/2Uw -4) in region A, now cannot be ignored in this layer. Substitut- 
ing the resulting expansions in Eq. (2.2) and including "viscous" terms, we write 

Yau/ax + V -- P~ = ~a2ula? 2, au/ax + avlaY = o. (3.5) 

In the limit Y + • the boundary conditions acquire the form 

ou = p(~), ou = 0 (X) P(1) Jim ~ (X), lira ~2" - -  (X). 
u  ~ + ~  

B e f o r e  s t a t i n g  t h e  b o u n d a r y  c o n d i t i o n s  i n  t h e  l i m i t  X + •  we m u s t  make  n o t e  o f  t h e  
fact that p = (Vw/~e)(pe/Pw)-i/2u'(O)(Me 2 - l)-Z/2Re-i/2Uw-ZAP -3/2 is the ratio of the length 
of the interaction zone to the "viscous" decay length for perturbations in the critical lay- 
er in region B. Also, since p = O(i) in general, the boundary conditions with respect to 
the longitudinal coordinate are extinction conditions. To arrive at the final statement of 
the problem, we differentiate Eq. (3.5) with respect to Y and denote m = aU/aY as the vortic- 
ity in the critical layer. For the vorticity we have (omitting all indices) 

YO~/OX- -P ' (X)O~/OY = ~Oz~/OY2~ 
+~ 

d [ ~ d Y + P ( X ) - - { - P ' ( X ) = e ( X ) ,  l i ra  ~ =  l i m  ~ = 0 .  
dX ~ Y ~  X~ 

We s e e  a t  o n c e  t h a t  o n e  o f  t h e  s o l u t i o n s  o f  t h e  p r o b l e m  i s  ~ = O, P(X)  = O ( x ) [ 1  - e - X ] ,  
which coincides with the solution obtained by passing to the limit from the triple-decker 
model. However, the uniqueness of this solution has not been proved. 

The author is grateful to A. I. Ruban, S. N. Timoshin, and V. B. Zametaev for a care- 
ful and critical discussion of the article. 

L. 

LITERATURE CITED 

V. Ya. Neiland, "Theory of the separation of a laminar boundary layer in supersonic 
flow," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1969). 

674 



. 

3. 

. 

5. 

6. 

7. 

K. Stewartson and P. G. Williams, "Self-induced separation," Prec. R. Soc. London, 
Ser. A, 312, No. 1509 (1969). 
P. L. Krapivskii and V. Ya. Neiland, "Boundary-layer separation from the stationary 
surface of a body in a supersonic gas flow," Uch. Zap. Tsentr. Aerogidrodin. Inst., 

13, No. 3 ( 1 9 8 2 ) .  
V. I .  Zhuk and O. S. Ryzhov,  " L o c a l l y  i n v i s c i d  d i s t u r b a n c e s  in  a b o u n d a r y  l a y e r  w i t h  
s e l f - i n d u c e d  p r e s s u r e , "  Dokl .  Akad. Nauk SSSR, 263 , No. 1 ( 1 9 8 2 ) .  
Vik. V. Sychev, "Asymptotic theory of transient separation," Izv. Akad. Nauk SSSR, 
Mekh. Zhidk. Gaza, No. 6 (1979). 
V. I. Zhuk, "Locally recirculating zones in a supersonic boundary layer on moving 
surface," Zh. Vychisl. Mat. Mat. Fiz., 22, No. 5 (1982). 
O. S. Ryzhov and V. I. Zhuk, "Internal waves in the boundary layer with the self- 
induced pressure," J. Mec., 19, No. 3 (1980). 

REFINEMENT OF THE EQUAL-AREAS LAW FOR UNSTEADY PLANE 

SHOCK WAVES OF MODERATE INTENSITY 

S. N. Makarov UDC 533.6.011.72+534.2.532 

i. The equal-areas law, or Whitham's law, is often used in the theory of weak shock 
waves; it states that the integral of the flow velocity (excess density or pressure) is 
time-invariant (see [1-3]): 

~v = const, d X  
z ( 1 . 1 )  

where L is the wavelength, and X = x - cot is the accompanying coordinate. Equation (i.i) 
can be regarded as a conservation law for the simple-wave equation 

v t + ~vv x = O, 

which is valid in the presence of discontinuities [i]. Here (and from now on) ~ = (i/2)(~ + 
i). The equal-areas law describe the onset and development of an isentropic discontinuity 
in a simple wave and the laws governing the decay of plane shock waves. 

Equation (i.i) follows from an analysis of the corresponding viscous problem. The 
simple-wave equation must be used with allowance for real dissipation (the Burgers equation 
in nonlinear acoustics) [2]: 

v t + ~vv x - -  (b/2po)Vxx = 0 ( 1 . 2  ) 

[b = ~ + (4 /3 )n  + (~ - 1)K/Cp i s  t h e  d i s s i p a t i o n  f a c t o r ,  q and ~ a r e  t h e  s h e a r  and bu lk  
viscosity coefficients, and ~ is the thermal conductivity]. An existing theorem [4] states 
that Eq. (1.2) has a unique conservation law, which coincides with Eq. (i.i). 

We note that the Burgers equation is not a formal device in this case, but is derived 
from the complete system of equations of motion upon satisfaction of the natural asymptotic 
conditions [2, 5] 

~/OX = O(1), ~/Ot = O(p); v, p' = O(p); ~, 4, • = O(p), ( 1 . 3 )  

where ~ is a small parameter (the wave amplitude), and 0' is the excess density. Conditions 
(1.3) have the physical significance that the traveling waveform varies slowly as a result 
of weak nonlinearity and dissipation. 
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